UNIVERSITY OF TWENTE.

Concept Extraction Challenge: University of Twente at #MSM2013

Mena B. Habib, Maurice van Keulen, and Zhemin Zhu Database Chair

Agenda

- Introduction.
- Named Entity Extraction:
 - SVM.
 - CRF.
 - Hybrid approach.
- Named Entity Categorization :
 - Named Entity Disambiguation.
 - Entity Categorization.
- Results.
- Conclusion.

Introduction

Named Entity Extraction

- SVM:
 - Use TwiNER (Li et al @ SIGIR 2012) approach for segmenting tweet.
 - Yago KB is also used to enrich the NE candidates to achieve high recall.
 - Some hypothesis are applied to improve precision (removing stop words & verbs)

 Different features are extracted for each segment to train and test the SVM (like POS, AIDA disambiguation score, MS Web-Ngram probability, Shape features, frequency, etc.)

UNIVERSITY OF TWENTE.

Named Entity Extraction

- CRF:
 - CRF is popular for sequence labeling. But training of CRFs can be very expensive due to the global normalization (linear-chain CRFs):
 - quadratic in the size of the label set and almost quadratic in the size of the training sample
 - We used method called *empirical training*.
 - The maximum likelihood estimation (MLE) of the *empirical training* has a closed form solution, and it does not need iterative optimization and global normalization. (Fast!)
 - The MLE of the *empirical training* is also a MLE of the standard training. (Precise!)
- Tweet text is tokenized. For each token, the following features are extracted and used to train the CRF:
 - The Part of Speech (POS) tag of the word.
 - The word shape.

UNIVERSITY OF TWENTE.

Named Entity Extraction

- Hybrid approach:
 - We take the union of the CRF and SVM results, after removing duplicate extractions, to get the final set of annotations.
 - For overlapping extractions we select the entity that appears in Yago, then the one having longer length.

Named Entity Categorization

- Named Entity Disambiguation:
 - AIDA disambiguation system is used to disambiguated the extracted NE.
 - \sim 75.8% of training data NEs \in YAGO KB.
 - For NEs ∉YAGO, we look for the first token in the NE if it ∈ YAGO, if found we pick the entity with the higher prior probability. (Ex: "Sara MacDonald" is assigned to "…/ wiki/Sara_Sidle")
 - Other NEs ∉YAGO at all are assigned to --NME--.

Named Entity Categorization

- Entity Categorization:
 - We build a profile for each category (PER, LOC, ORG, and MISC) from the Wikipedia Categories of each disambiguated entity.
 - If (NE \in Training set) \rightarrow Use category with the highest prior probability;
 - Else if (NE assigned to an entity) → Find the most similar category profile to the Wikipedia Categories of the disambiguated entity;
 - Else \rightarrow Assign NE to PER category; //used with 2.8% of the extracted entities.

Results

• 4-fold cross validation.

Extraction Results					
	Pre.	Rec.	F1		
Twiner Seg.	0.0997	0.8095	0.1775		
Yago	0.1489	0.7612	0.2490		
Twiner∪Yago	0.0993	0.8139	0.1771		
Filter(Twiner∪Yago)	0.2007	0.8066	0.3214		
SVM	0.7959	0.5512	0.6514		
CRF	0.7157	0.7634	0.7387		
CRF USVM	0.7166	0.7988	0.7555		

Extraction and Classification Results

	Pre.	Rec.	F1
CRF	0.6440	0.6324	0.6381
AIDA Disambiguation + Entity Categorization	0.6545	0.7296	0.6900

Conclusion

- We split the NER task into two separate tasks:
 - NEE which aims only to detect entity mention boundaries in text.
 - NEC which assigns the extracted mention to its correct entity type.
- For NEE we used a hybrid approach of CRF and SVM to achieve better results.
- For NEC we used AIDA disambiguation system to disambiguate the extracted named entities and hence find their type.

Thank You

Cases where SVM extracts other NE than CRF

217: "_Mention_: Joy ! *MS* Office now syncs with *Google* Docs -LRBwell, in beta anyway -RRB-. We are soon to be one big happy collaborative Click family. *Ric*"

245: _Mention_ "`` valleylist " " v135 r. 1 - - electricity -LRB- **jerry yang** and david filo -RRB- <NEWLINE> _URL_ "

Bold \rightarrow **SVM** *Italic* \rightarrow *CRF*

UNIVERSITY OF TWENTE.